Module 1
Properties of Fluids: Pressure, density, bulk modulus, dynamic and kinematic viscosity, surface tension, capillary – fluid at rest, Pascal’s law, applications, pressure head, vapor pressure, pressure measurement, manometers, gauges and pressure switch – pressure on immersed surfaces – floating body.
Properties of Fluids: Pressure, density, bulk modulus, dynamic and kinematic viscosity, surface tension, capillary – fluid at rest, Pascal’s law, applications, pressure head, vapor pressure, pressure measurement, manometers, gauges and pressure switch – pressure on immersed surfaces – floating body.
Module 2
Fluid in Motion: Euler’s equation in one dimension. One dimensional incompressible Bernoulli’s equation, interpretation of Bernoulli’s equation as a energy equation. Flow through Orifices – measurement of fluid velocity, pitot tube – discharge measurement, venturimeter, orifice meter, Rota meter and notches.
Flow of compressible fluids through pipes – types of flow – critical Reynolds number – friction factors for laminar and turbulent flow – hydraulic gradient – minor losses – transmission of power through pipes.
Fluid in Motion: Euler’s equation in one dimension. One dimensional incompressible Bernoulli’s equation, interpretation of Bernoulli’s equation as a energy equation. Flow through Orifices – measurement of fluid velocity, pitot tube – discharge measurement, venturimeter, orifice meter, Rota meter and notches.
Flow of compressible fluids through pipes – types of flow – critical Reynolds number – friction factors for laminar and turbulent flow – hydraulic gradient – minor losses – transmission of power through pipes.
Module 3
Hydraulic Turbines: Evolution of present day hydraulic turbines from the water wheel – classification – degree of action – Pelton wheel, Francis and Kaplan Turbines – constructional details and characteristics only (no problems based on velocity triangles) – governing of turbines – draft tube – specific speed – cavitation effects.
Hydraulic Turbines: Evolution of present day hydraulic turbines from the water wheel – classification – degree of action – Pelton wheel, Francis and Kaplan Turbines – constructional details and characteristics only (no problems based on velocity triangles) – governing of turbines – draft tube – specific speed – cavitation effects.
Module 4
Pumping Machinery: General classification – Dynamic pumps – working of centrifugal pumps, priming, vapour pressure, wear rings, hydraulic balancing, Classification of impellers, single and double suction impellers – types of casings – effect of vapour pressure on lifting of liquid – specific speed – performance pump characteristics: main, operating, ISO efficiency characteristics curves – NPSH _ multistage pumps – propeller pumps – pump in parallel & series operation – Theory, efficiency, performance curves & application of self-priming pump, jet pump, airlift pump, slurry pump & hydraulic ram (description only).
Pumping Machinery: General classification – Dynamic pumps – working of centrifugal pumps, priming, vapour pressure, wear rings, hydraulic balancing, Classification of impellers, single and double suction impellers – types of casings – effect of vapour pressure on lifting of liquid – specific speed – performance pump characteristics: main, operating, ISO efficiency characteristics curves – NPSH _ multistage pumps – propeller pumps – pump in parallel & series operation – Theory, efficiency, performance curves & application of self-priming pump, jet pump, airlift pump, slurry pump & hydraulic ram (description only).
Module 5
Positive Displacement Pumps: reciprocating pumps, effect of vapour pressure on lifting of liquid – indicator diagram – acceleration head – effect of friction – use of air vessels – work saved – slip – efficiency – pump characteristics – applications – Cavitation in fluid machines – Rotary pumps: Gear, Screw, vane, root pumps – rotary axial & rotary radial piston pumps – thory, efficiency, performance curves – applications (Description only).
mgu university b.tech electrical S3 syllabus
References
Positive Displacement Pumps: reciprocating pumps, effect of vapour pressure on lifting of liquid – indicator diagram – acceleration head – effect of friction – use of air vessels – work saved – slip – efficiency – pump characteristics – applications – Cavitation in fluid machines – Rotary pumps: Gear, Screw, vane, root pumps – rotary axial & rotary radial piston pumps – thory, efficiency, performance curves – applications (Description only).
mgu university b.tech electrical S3 syllabus
References
1. Fluid Mechanics & Hydraulic Machines: Abdulla Sheriff, Standard Publ.
2. Fluid Flows Machines: Govinda Rao N.S, TMH.
3. Fluid Mechanics & Hydraulic Machines: Jagadishlal, Metropolitan publ.
4. Fluid Mechanics: Massey B. S, ELBS
5. Centrifugal and Axial Flow Pumps: Stepanoff John A. J, Wiley & Sons.
2. Fluid Flows Machines: Govinda Rao N.S, TMH.
3. Fluid Mechanics & Hydraulic Machines: Jagadishlal, Metropolitan publ.
4. Fluid Mechanics: Massey B. S, ELBS
5. Centrifugal and Axial Flow Pumps: Stepanoff John A. J, Wiley & Sons.